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Stably stratified flows past three-dimensional orography have been investigated using
a stratified towing tank. Flows past idealized axisymmetric orography in which the
Froude number, Fh = U/Nh (where U is the towing speed, N is the buoyancy
frequency and h is the height of the obstacle) is less than unity have been studied.
The orography considered consists of two sizes of hemisphere and two cones of
different slope. For all the obstacles measurements show that as Fh decreases, the
drag coefficient increases, reaching between 2.8 and 5.4 times the value in neutral flow
(depending on obstacle shape) for Fh . 0.25. Local maxima and minima in the drag
also occur. These are due to the finite depth of the tank and can be explained by linear
gravity-wave theory. Flow visualization reveals a lee wave train downstream in which
the wave amplitude is O(Fhh), the smallest wave amplitude occurring for the steepest
cone. Measurements show that for all the obstacles, the dividing-streamline height,
zs, is described reasonably well by the formula zs/h = 1 − Fh. Flow visualization
and acoustic Doppler velocimeter measurements in the wake of the obstacles show
that vortex shedding occurs when Fh . 0.4 and that the period of the vortex
shedding is independent of height. Based on velocity measurements in the wake of
both sizes of hemisphere (plus two additional smaller hemispheres), it is shown that a
blockage-corrected Strouhal number, S2c = fL2/Uc, collapses onto a single curve when
plotted against the effective Froude number, Fhc = Uc/Nh. Here, Uc is the blockage-
corrected free-stream speed based on mass-flux considerations, f is the vortex shedding
frequency and L2 is the obstacle width at a height zs/2. Collapse of the data is also
obtained for the two different shapes of cone and for additional measurements made
in the wake of triangular and rectangular flat plates. Indeed, the values of S2c for all
these obstacles are similar and this suggests that despite the fact that the obstacle
widths vary with height, a single length scale determines the vortex-street dynamics.
Experiments conducted using a splitter plate indicate that the shedding mechanism
provides a major contribution to the total drag (∼ 25%). The addition of an upstream
pointing ‘verge region’ to a hemisphere is also shown to increase the drag significantly
in strongly stratified flow. Possible mechanisms for this are discussed.

1. Introduction
Stably stratified atmospheric flows over orography have been the subject of exten-

sive research. One of the main reasons for the interest in this subject is that many of
the features of orographic flows occur on scales which are too small to be resolved by
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current numerical weather prediction and general circulation models. Since some of
these features give rise to a net drag force on the orography (and hence a retarding
force on the mean atmospheric flow), there is a need to parametrize their effects in
the larger scale numerical models. Early parametrization schemes were designed to
include the effects of the unresolved gravity waves generated by the flow over moun-
tain ranges (e.g. Palmer, Shutts & Swinbank 1986) and more recently these schemes
have been refined in order to represent other effects such as low-level wake drag (Lott
& Miller 1997). In order to improve local weather forecasts there is also a need to
understand the mechanisms which give rise to other features of orographic flows (e.g.
intense downslope windstorms, lee vortex formation). Apart from the improvement of
numerical weather prediction there are other reasons why a good understanding of
stably stratified orographic flows is important. For example, before reliable pollution
dispersion predictions in hilly terrain can be made a better understanding of the flow
is required (e.g. Snyder & Hunt 1984).

An important parameter that influences the gross features of flow over orography
under stratified conditions is Fh = U/Nh, commonly referred to as a Froude number,
where U is the undisturbed air-stream speed, N is the buoyancy frequency and h
is the mountain height. Note that the term Froude number is usually reserved for
ratios of wave speeds to flow speeds and Fh clearly does not represent such a ratio.
In the interests of remaining consistent with previous authors and to avoid further
confusion we shall, however, continue to use this terminology and will refer to Fh as
a Froude number.

Weakly stratified flows (Fh > 1) are quite well understood because when the slope
of the terrain is sufficiently small the governing equations can be linearized to a
good degree of approximation (e.g. Smith 1988). However, more strongly stratified
flows (Fh < 1) tend to be far more complicated and nonlinear effects are important.
Although much progress has recently been made towards a greater understanding of
these flows, questions such as how the drag varies with Fh and what mechanisms are
responsible for the drag when Fh is considerably smaller than unity are still far from
being answered completely. Broadly speaking, flows for which Fh � 1 tend to be
around the mountain and only streamlines which originate at levels sufficiently close
to the summit height will pass over the mountain. Based on simple energy arguments
Sheppard (1956) predicted that only fluid parcels which originate at a height greater
than h(1−Fh) would pass over the summit and that below this height the streamlines
would go around the mountain. Further theoretical advances were made by Drazin
(1961). His theory for inviscid stably stratified flow past three-dimensional orography
is asymptotic for small Fh and to lowest order it predicts that the flow is in horizontal
planes around the orography. The streamlines are deflected a tiny amount, O(F2

h h), as
they pass the orography and this is caused by the vertical variation in the pressure
due to the change of the terrain’s cross-section with height. Drazin’s solution, being
inviscid, does not allow for the possibility of separation from the obstacle. It also
breaks down at the summit of the orography where the fluid is able to pass over
the top. This ‘summit region’ extends to a depth of O(Fhh) below the summit and
is a region of gravity-wave generation. Recently Hunt et al. (1997) have attempted
to match the flow above the summit (using an approximate solution based on linear
theory) to the Drazin solution below in the ‘middle region’ of the flow. There is also
another region in which the Drazin solution breaks down and this occurs at the
foot of mountains (Hunt & Snyder 1980) whose shapes are such that they do not
abruptly descend into the plane, but rather blend into the ground gradually. This
‘verge region’ again has a depth of O(Fhh) and recent theoretical work by Greenslade
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(1994) indicates that vertical motion occurs within this region, suggesting that this
is another region of gravity-wave generation. The question of how far these gravity
waves propagate (e.g. can they propagate into the middle region?) and whether or
not they make a significant contribution to the net drag remains an open one.

With the recent acceleration in computing technology numerical simulation of three-
dimensional orographic flows has become possible (e.g. Smolarkiewicz & Rotunno
1989; Miranda & James 1992; Schar & Durran 1997). Numerical simulation provides
a powerful technique for understanding these very complicated flows but cannot
provide complete answers. An equally powerful and complementary approach is one
of laboratory experiment. Despite the vastly different scales (and hence Reynolds
number) much insight into atmospheric flows has been gained through experiments
conducted in the laboratory. In particular, Brighton (1978), using a recirculating
stratified tank, studied strongly stratified flows past three-dimensional obstacles. When
Fh � 1 his experiments revealed flows in which the fluid trajectories were around
the obstacles and were almost horizontal (except near the summits), in qualitative
agreement with Drazin’s theory. Two features of the flows which could not be
explained by Drazin’s theory, however, were a horizontally orientated cow-horn
shaped eddy which occurred for Fh . 1 and an unsteady separated wake in which
vortices were shed periodically. The vortex shedding occurred when Fh < 0.15. Hunt
& Snyder (1980) used a large towing tank to examine the flow structure over a three-
dimensional bell-shaped hill. Again, in agreement with Drazin’s solution they found
that away from the summit and the base of the orography, the flow was more or less
horizontal. As in Brighton’s (1978) experiments, however, the flow was seen to separate
from the sides of the obstacle below the summit region. Castro, Snyder & Marsh (1983)
studied stratified flows past three-dimensional triangular ridges of various widths in
a towing tank. Their experiments also revealed a separated unsteady wake. Vortex
shedding was observed for Fh 6 0.3 although the wake was still unsteady for values
of Fh as high as 0.4, at which point the wake exhibited a ‘meandering’ behaviour.

Much attention has been devoted to the ‘dividing-streamline height’ concept in
stratified towing-tank work. By the dividing-streamline height we refer to the height
from which a fluid parcel must originate far upstream if it is to pass over the orography
rather than travel around it. Sheppard’s (1956) energy-based arguments indicate that,
to a first approximation, for flows in which Fh < 1 the dividing-streamline height, zs,
is given by

zs/h = (1− Fh). (1.1)

Smith (1988), in a linearized analytical study, points out that this formula takes
no account of the dynamic pressure perturbation. Nevertheless, Sheppard’s formula
has been shown to work quite well (e.g. Hunt & Snyder 1980; Snyder, Britter &
Hunt 1980), at least for obstacles of low spanwise aspect ratio. Towing-tank studies
conducted by Snyder et al. (1985) with truncated sinusoidal ridges orientated at
various angles to the flow and the three-dimensional ridge experiments presented by
Castro et al. (1983) suggest that Sheppard’s criterion for a fluid parcel to travel over
the summit is a necessary condition rather than a sufficient one. Indeed, depending
on the geometry of the obstacle, fluid parcels which originate just off the centreplane
may travel around the sides regardless of whether they possess enough kinetic energy
to pass over the summit.

Despite the obvious potential of the laboratory approach only a handful of ex-
periments have been designed to measure orographic drag. Lofquist & Purtell (1984)
described experiments in which the drag on spheres was measured in a tank over
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a range of Froude and Reynolds numbers. Similar work was undertaken by Mason
(1977) who measured the drag on a sphere under stratified conditions in both rotating
and non-rotating cases. The application of both these studies to atmospheric flow is,
of course, limited by the fact that the measurements were for obstacles which were
remote from boundaries. Castro, Snyder & Baines (1990) made drag measurements
which are more relevant to the atmospheric case by surface mounting the obsta-
cles. Using a towing-tank facility they made measurements of the drag exerted on
two-dimensional and three-dimensional hills and fences for values of Fh & 0.5. Their
results indicate a dependence of the drag on the parameter K = ND/πU, where D is
the fluid depth. Local minima in the drag occur at integer values of K with maxima
occurring in between. This is entirely consistent with linear theory for stratified flow
in a channel of finite depth. The effect of the rigid-lid boundary condition caused by
the bottom of the tank is to restrict the number of gravity-wave modes to a finite
number, Int(K). Under certain conditions the drag on these obstacles was unsteady
and varied periodically during the tows. These oscillations were shown to be directly
linked to periodic oscillations in the gravity-wave amplitude and have only more
recently been satisfactorily explained (Rottman, Broutman & Grimshaw 1996).

There is extensive literature on stratified flows over two-dimensional orography
and it is perhaps appropriate to discuss these flows here and highlight the differences
and similarities between two- and three-dimensional flows. One major difference is
that, unlike the three-dimensional case, in two-dimensional flow fluid parcels which
originate upstream below the dividing-streamline height cannot pass around the
mountain and instead may become completely blocked upstream. This flow blocking is
controlled by the presence of columnar modes which propagate horizontally upstream
(Baines & Hoinka 1985). These modes presumably exist in three-dimensional flow
also, but are likely to be of smaller amplitude. For sufficiently large Fh (Fh ∼ 1),
two-dimensional flows can be described by Long’s model (Long 1953) in which the
governing nonlinear equations reduce to a single linear ordinary differential equation
when ρU2/2 and N are independent of height upstream. Solutions of Long’s model,
valid for steady-state flows in which all streamlines originate upstream (i.e. there
are no closed streamlines) show the existence of a gravity-wave field to the lee
of the orography. As Fh decreases a critical value is reached (dependent on the
orography shape) at which the streamlines begin to overturn (Huppert & Miles 1969)
and locally the fluid becomes statically unstable. This ‘wave breaking’ process is
generic to severe downslope windstorms and occurs in both two-dimensional (e.g.
Peltier & Clark 1979) and three-dimensional flows (Castro & Snyder 1993) and
recent advances in understanding how these windstorms evolve have been made by
considering finite-amplitude wave-activity diagnostics in two-dimensional numerical
simulations (Scinocca & Peltier 1994).

In this paper we shall attempt to address some of the remaining open questions
regarding strongly stratified flows past orography. To this end we present the results
of a series of stratified towing-tank experiments conducted at the Environmental
Flow Research Centre (EnFlo), University of Surrey. The experiments were designed
to answer the following specific questions:

(i) How does the drag vary with Fh for three-dimensional axisymmetric orography
in strongly-stratified flows?

(ii) Which processes are responsible for the drag?
(iii) How well do theoretical ideas describe the flows?
(iv) Can gravity-wave motion within a verge region make a significant contribution

to the drag?
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Figure 1. Schematic diagram illustrating the EnFlo towing tank apparatus.

The experimental facility is described in § 2 and the results from the drag mea-
surement experiments are presented in § 3. In § 4 specific experiments using dye-
visualization and acoustic Doppler velocimeter techniques are described. These were
designed to investigate the flow in the summit region (gravity-wave amplitudes and
dividing-streamline height) and the middle region (the flow around the obstacles and
the flow in the wake). In § 5 some additional drag measurements are made in order to
ascertain the importance of vortex shedding and to investigate the effects of a verge
region. The results are summarized and conclusions are drawn in § 6.

2. Experimental techniques
The EnFlo stratified towing tank is 12 m long, 1.25 m wide and 1 m deep. Stratifica-

tion is achieved by filling the tank from the bottom with a mixture of brine and water
whose density continuously increases as the tank is filled. A computer-controlled
mixing valve allows any specified density profile to be obtained which, in the case
of a linear profile, gives a constant value of the buoyancy frequency N with depth,
where N2 = g/ρm × dρ/dz, ρ(z) and ρm are the density and mean density of the
brine–water mixture and z is the vertical coordinate measured downwards from the
free surface (see figure 1). The density profiles were measured immediately after the
tank was filled using a hand-held density meter; these measurements revealed a very
linear density profile. For the drag measurement experiments, typical values of N
achieved were between 1.1 and 1.4 s−1 and in vortex-shedding experiments, N ranged
from 0.45 to 1.6 s−1.

For the drag measurements the obstacles were towed through the tank using
methods similar to those of previous experimenters (Castro et al. 1990). Briefly, the
obstacles were mounted upside down on a stainless steel frame (drag balance) which
was suspended (in such a way as to restrict spanwise movement) beneath a carriage
that runs smoothly along rails on the top of the tank. The carriage itself was pulled at
a constant velocity by an electric motor and each tow commenced with an impulsive
start-up of the motor. This start-up procedure generated surface waves, but these were
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of very small amplitude and were therefore most unlikely to have had a significant
effect on the overall flow field. The tank was filled to give a fluid depth of 0.71 m,
leaving 0.5 cm of the obstacles protruding above the free surface. This was necessary
to avoid immersing the drag balance itself in the fluid, which would disturb the flow
and contribute to the overall drag. Two different capacity load cells (50 N and 10 N)
were used to measure the drag exerted on the obstacles during the tows. The load
cells were attached between the front of the drag balance and a metal column on
the front of the carriage. The arrangement of the whole drag-measurement system
is such that only the streamwise component can be measured. A schematic diagram
of this apparatus is presented in figure 1. Flow visualization was achieved using a
dye-injection technique. A food dye–water mixture, of the same density as the fluid
in the tank at the depth of injection, was injected (at up to five levels simultaneously)
from a rake upstream of the obstacle on the spanwise centreplane. The injection
rate was controlled so that velocity of the dye was the same as the tow speed.
Video cameras were positioned on mountings attached to the side of the carriage
and on a separate carriage below the tank which was pulled along at the tow speed.
Measurements of the dye motion were made by analysing the recordings of the tows
with frame-grabbing software on a computer and applying appropriate corrections
for parallax. Note that these parallax corrections did not allow for the bending of
light rays due to changes in the refractive index caused by the stratification. Such
effects were investigated by suspending a large flat board (upon which a Cartesian
grid was drawn) in the tank and taking still images with the video camera mounted
at the side of the tank (which was positioned 985 mm from the spanwise centreplane
and typically 300 mm below the level of the free surface). The grid was suspended
in a vertical plane a range of distances (up to 200 mm) from the centreplane and
images of the grid were compared under conditions of neutral stratification and linear
stratification. Changes in the positions of specific points in the images caused by the
stratification were found to be negligible, indicating that these refractive index effects
could be neglected. Velocity measurements were made in the wake of the obstacles
using a Nortek Acoustic Doppler Velocimeter. The probe was attached to a track on
the rear of the carriage and its position could be adjusted in the vertical and spanwise
directions.

The stratification is very robust in the sense that it is quite unaffected by towing
obstacles through the tank. In fact, after a complete day’s work (which would typically
involve 5 tows) the only significant changes in the density profile occurred at the free
surface and the bottom of the tank where neutral layers of a few centimetres in depth
formed. The lack of change in the density profile over the bulk of the fluid (noted also
by previous researchers including Rottman & Britter 1986) is primarily due to the
strong stratification which inhibits vertical mixing and the fact that, compared to the
kinematic viscosity of the fluid (≈ 10−6 m2 s−1), the coefficient of diffusivity of salt in
water is small (≈ 1.5×10−9 m2 s−1). Due to the slow erosion of the density profile at the
bottom and immediately under the free surface, the tank was re-filled every morning
before experiments began. For some of the later vortex-shedding measurements even
greater control of the linearity of the density profile near the surface was achieved by
frequent use of a ‘skimmer’ to remove the top few centimetres of fluid (while re-filling
from the bottom to maintain a constant depth).

Experiments were conducted under both stratified and neutral conditions for a
variety of obstacle shapes and sizes. In order to investigate the dependence of drag,
gravity-wave generation, wake structure and dividing-streamline height on obstacle
shape, two basic shapes were chosen. These were a hemisphere (which has a smooth,
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flat summit) and a cone (which has a pointed summit). The hemispheres allow some
comparison with previous results since some earlier work has focused on flat-topped
obstacles (e.g. Hunt & Snyder 1980). The cones, on the other hand, are a more realistic
representation of steep mountain summits, although admittedly they are somewhat
steeper than the mountain tops that occur in nature. In order to examine the effect of
blockage due to the finite width and height of the tank, two sizes of hemisphere were
used, with base radii of 200 mm and 150 mm. We shall refer to these hemispheres as
HS1 and HS2, respectively. Two shapes of cone were chosen. These both had the
same height, 250 mm, but different radii of 250 mm and 100 mm, giving slopes of 1
and 2.5. We shall refer to these as cones C1 and C2, respectively.

3. Drag measurements on the cones and hemispheres
3.1. Results for neutral flow

One of the main problems associated with the applicability of towing-tank experiments
to the atmospheric scale is that viscous effects at laboratory scales will undoubtedly
be different from those in the atmosphere. Typical Reynolds numbers for orographic
flows modelled in the towing tank, Re = UL/ν, where L is the obstacle base width
and ν is the kinematic viscosity are ∼ 104 whilst for atmospheric flows they are
∼ 109. This huge difference means that before laboratory results can be applied to the
atmosphere we must investigate and to some extent remove any Reynolds number
effects. With this in mind the drag was measured on the cones and hemispheres
under neutral conditions (and thus without the additional complicating effects of
stratification) for a variety of different carriage speeds. For each tow the load-cell
signal was sampled at a frequency of 100 Hz. An example of the drag signal obtained
from the 50 N load cell is given in figure 2(a). After some initial large-amplitude
high-frequency oscillations in the drag (due to the impulsive start-up of the carriage),
the measured drag appears to settle down to a quasi-steady state until the endwall
is approached after about 90 s. For each tow a mean drag coefficient was calculated,
defined by

Cd =
τ

1
2
ρU2A

, (3.1)

where τ is the average drag calculated over periods when the drag remained approxi-
mately steady and A is the frontal cross-sectional area of the obstacle. Each tow was
repeated at least three times. Errors associated with the zero offset of the load cells
meant that for the lowest tow speeds (for which the measured drag is smallest) the
Cd results were only repeatable to within ∼ 10%. At higher speeds the repeatability
was much better. Figure 2(b) shows the variation of the drag coefficient with Re for
the four obstacles. These drag coefficients are calculated from the average value of
Cd (based on at least three tows) at each Re. To aid interpretation, smooth curves
have been drawn through the drag coefficient data. Typical error bars, based on a
pessimistic estimate of 10% accuracy, have been added to this and all following drag
plots.

The drag coefficients, caused by flow separation and skin friction, are somewhat
Reynolds number dependent for the lower values although the curves do appear to
level off for Re & 5× 104. The Reynolds number dependence reveals the importance
of viscous effects on the flow despite the relatively large scale of the obstacles used in
this study compared to some previous work (e.g. Brighton 1978). This must be taken
into account when interpreting the results in the stratified case and we shall attempt
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Figure 2. (a) The evolution of the drag (after smoothing) during a tow of the hemisphere HS1
under neutral conditions at a speed of 10.8 cm s−1 (Re = 4.3× 104) and (b) the drag coefficient, Cd,
vs. Re for the four obstacles C1, C2, HS1 and HS2 under neutral conditions. Also included are drag
coefficient measurements on the hemisphere HS1 with attached verge region which are described in
detail in § 5.

this by normalizing the stratified drag measurements by the drag in neutral flow at
the same Reynolds number. Note that the drag data for the two hemispheres collapse
onto the same curve, indicating that any blockage effects (due to the presence of the
tank sidewalls and floor) are minimal for neutral stratification.

3.2. Results for stratified flow

The tows were repeated in the stratified case and variation in Fh was achieved by
altering the tow speed rather than the density profile. The variation of the drag
coefficient in the stratified case, Cds, with Fh is shown in figure 3. Figure 4 shows the
variation of the ratio of the stratified drag to the neutral drag at the same Reynolds
number, Cds/Cd, with Fh. To aid interpretation cubic splines have been fitted through
the data. Both Cds and Cds/Cd generally increase with decreasing Fh for all four
obstacles. The stratification appears to significantly increase the drag for Fh . 0.4 for
all the obstacles and the maximum measured values of Cds/Cd are 3.9, 2.8, 5.4 and
2.9 for C1, C2, HS1 and HS2, respectively. Note that although the drag coefficients
are highest for the low values of Fh, the actual drag exerted on the obstacles is very
small, meaning that the repeatability of these experiments is poorer than at the higher
values of Fh and we were unable to obtain reliable data for values of Fh . 0.15. Note
also that the data for the two hemispheres do not collapse onto the same curve and
that the differences are largest for low values of Fh. We shall return to this point in
§ 5.1.

Lofquist & Purtell (1984) have presented drag results for a sphere at lower Reynolds
numbers than those studied here. The sphere, radius r, was submerged in the centre of
a stratified towing tank. For values of their stratification parameter κ = Nr/U < 3.5
(κ is equivalent to F−1

h in our experiments) their measurements reveal a trend for
∆Cd = Cds − Cd to decrease with decreasing κ. This is equivalent to the general trend
that we see (i.e. Cds/Cd decreasing as Fh increases). However, Lofquist & Purtell’s data
show a large maximum in ∆Cd at κ = 3.5 (Fh = 0.29) and for more strongly stratified
flows the drag coefficient decreases (see their figure 4). A similar maximum in the drag
coefficient is also found by Mason (1977) (see his figure 6). Although we are unable
to obtain reliable drag measurements when Fh . 0.15 it is clear from our data that
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Figure 3. The variation of the drag coefficient, Cds, with Fh for the four obstacles under stratified
conditions.
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if such a maximum does exist, it occurs at a much lower Froude number than that
found by Lofquist & Purtell (1984) and Mason (1977). Local maxima and minima
in the drag coefficients do occur though and it seems that these are due to the finite
depth of the tank. As demonstrated by Castro et al. (1990), minima in the drag occur
for integer values of the parameter K = ND/πU. Figure 5, showing Cds/Cd vs. K for
the hemisphere HS1, reveals that this is true in our experiments also; minima occur
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Figure 5. The variation of the ratio of drag coefficients, Cds/Cd, with K for the hemisphere HS1.
The dashed curve shown for K > 3 is speculative.

near K = 2 and K = 3. We can only speculate that this behaviour continues above
K = 3 since we do not have enough data in this range. However, we might expect
the size of the variations in Cds/Cd to decrease as K increases, since the amplitude of
the gravity-wave motions decreases (see § 4.1).

4. Flow visualization and velocity measurements
4.1. Gravity-wave measurements

Measurements of gravity-wave amplitudes were made by releasing dye upstream of
the obstacles between heights of h and 1.45h. Snapshots were obtained from video
footage of the tows and the amplitude of the wave motion in the lee of the obstacles
was measured using the computer-based image analysis system. An example of such
a snapshot is given in figure 6(a) which shows the flow over the hemisphere HS1
when Fh = 0.33. In this particular case the waves in the lee of the obstacle are almost
overturning. Indeed, soon after this instant a turbulent patch developed where the
waves began to break. Figure 7(a) shows the peak-to-peak vertical displacement in
the lee of the obstacle along the path of dye which was released upstream at the
summit height (an example of this is marked in the schematic diagram in figure
6(b)). Cubic splines have been fitted through the data to aid interpretation. The wave
amplitude appears to be O(Fhh) for all the obstacles, although for Fh & 0.3 the waves
generated by the narrow, steep cone C2 are significantly smaller than those generated
by the other shapes. The general trend is clearly one of increasing wave amplitude
with increasing Fh. Figure 7(b) shows the peak-to-peak amplitude normalized by r,
where r is the obstacle radius at the base. This choice of normalization (whose effect
on figure 7(a) is to change the C2 data only since h/r = 1 for all the other obstacles)
improves the collapse of the data somewhat since the amplitudes for the two cones
are now similar. Figure 8(a) shows the wave amplitude (normalized by h) when the
dye is released at 1.35h. Again, there is a general trend for the amplitudes to increase
with Fh and the amplitude is substantially smaller for the cone C2. Normalising
these wave amplitudes by r again improves the collapse of the data (see figure 8b)
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Figure 6. Visualization of wave generation by the hemisphere HS1 when Fh = 0.33 from
(a) video footage and (b) a schematic illustration of the flow. The flow, relative to the obsta-
cle, is from right to left in both pictures. Also marked in (b) is the peak-to-peak amplitude of the
vertical displacement of the dye released at summit height.
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Figure 7. The wave amplitude determined from the peak-to-peak displacements of dye released at
the summit height (a) normalized by h and (b) normalized by the radius r. The letter ‘B’ denotes
wave breaking.

indicating that for the cones, the slope may play an important role in determining
the wave amplitude. The fact that the waves generated by C2 are of small amplitude
compared to those generated by C1 is consistent with the idea that as the radius
reduces to zero (a ‘needle’ shape) one intuitively expects small amplitudes. This is
easily explained by considering the spectrum of wave modes forced by these shapes.
Linear theory indicates that a given stationary mode, with horizontal wavelength λ,
exists only if λ > 2πFhh and will decay exponentially in the vertical otherwise. Clearly
the spectrum of the steeper cone is such that short-wavelength modes are forced in
preference to longer wavelengths and, since as Fh increases the minimum permissible
wavelength increases, we would expect the waves forced by the cone C2 to be of
smaller amplitude than those forced by C1.

Wave breaking was observed in the lee of obstacles C1, HS1 and HS2 at certain
values of Fh and these are marked on figures 7 and 8 with the letter ‘B’. Note that,
consistent with the fact that the waves generated by the cone C2 were significantly
smaller than those generated by the other obstacles, no wave breaking was observed
for this obstacle. The wave breaking was not always a steady phenomenon: at
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Figure 8. The wave amplitude determined from the peak-to-peak displacements of dye released at
1.35h (a) normalized by h and (b) normalized by the radius r. The letter ‘B’ denotes wave breaking.

Fh = 0.45 the breaking in the lee of hemisphere HS1 occurred at the start of the
tow and had ceased by the halfway point of the tow and at Fh = 0.51 (hemisphere
HS2) and Fh = 0.27 and 0.39 (cone C1) the breaking occurred towards the end of
the tows. In the latter three cases it seems possible that the breaking was influenced
by endwall effects, e.g. reflection of upstream propagating modes. Apart from these
transient cases the breaking appears to be restricted to a fairly narrow interval in Fh
(0.16 6 Fh 6 0.32). This is consistent with results obtained by Castro & Snyder (1993)
who examined the wave-breaking regimes for a variety of hill shapes over a range of
spanwise aspect ratios and found that there existed upper and lower critical values of
Fh between which wave breaking occurred. The suppression of wave breaking at very
low values of Fh should perhaps be expected since the wave amplitude is very small.
Despite the fact that it is not strictly valid for this flow regime, the disappearance
of wave breaking at the higher values of Fh can be predicted, at least qualitatively,
by linear theory (Smith 1989). The physical reason for the disappearance of the
wave breaking is simply that, due to the increase of the horizontal wavelength as Fh
increases, the waves (whose amplitudes are determined by, amongst other things, the
Fourier decomposition of the obstacle shape) become de-tuned to the shape of the
obstacle.

As discussed by Hunt & Snyder (1980), for hills with small slope, under weakly
stratified conditions (Fh � 1), the occurrence of flow separation on the downwind
slope of the hill will be controlled by boundary-layer processes. At smaller Froude
numbers (Fh ∼ 1), however, separation can be controlled by the pressure distribution
produced by the gravity-wave train. Further, if the wavelength of the gravity waves is
similar to the characteristic width of the hill then flow separation may be completely
suppressed as the waves become ‘tuned’ to the hill shape. Hunt & Snyder’s (1980)
experiments indicated that this could occur for both two-dimensional and three-
dimensional axisymmetric hills. Under these circumstances, there will presumably be
a corresponding increase in the drag and wave amplitude. For hills of small slope,
when the depth of the fluid, D, is large compared to the hill width, L, linear theory
indicates that the horizontal wavelength of the gravity-wave train is ≈ 2πFhh. We
would therefore expect flow separation to be suppressed and the waves to be tuned to
the hill shape at the critical Froude number, Fhcrit

= L/2πh. In the present study, flow



Strongly stratified flow past orography 235

visualization reveals that flow separation occurs over the whole range of Fh examined
(0.07 6 Fh 6 0.59) and the waves do not appear to become tuned to the obstacle
shape. An example of the flow separation can be seen in figure 6. Presumably, the
reason for the separation is simply the fact that the obstacles all have steep slopes
and thus the critical Froude numbers are considerably smaller than unity (Fhcrit

= 1/π
for the hemispheres and cone C1 and Fhcrit

= 2/5π for the cone C2). At such small
Froude numbers, since the bulk of the flow is around rather than over the orography
(see § 4.2), the waves are of insufficient amplitude to prohibit flow separation.

The fact that the wave amplitude generally increases whilst the drag coefficient
decreases with increasing Fh is contrary to what occurs at much higher values of
Fh, where (as correctly indicated by linear theory) the wave amplitude and drag
coefficient are linked and both increase as Fh decreases from infinity. At lower values
of Fh (Fh & 1), inviscid linear theory for flow past three-dimensional orography (e.g.
Smith 1988) indicates that the pressure perturbation on the surface of the obstacle
is O(ρU2F−1

h ) and thus Cds ∝ F−1
h . Since in this regime fluid parcels which originate

at z = 0 upstream are able to travel over the summit, the wave amplitude is O(h).
Although the behaviour of the drag coefficient would appear consistent with our
measurements, the wave amplitude is clearly not. In order to allow for the fact
that when Fh . 1 some of the flow passes around the obstacle rather than over
the summit we might consider a Drazin-like solution in the middle region, which
makes no contribution to the drag, and apply the linear solution to the summit
region only. This effectively reduces the height of the orography to O(Fhh) and thus
the wave amplitude will now be O(Fhh) also. Accounting for the decrease in frontal
cross-sectional area on which the force is exerted, such an approach gives rise to a
drag coefficient ∝ F2

h . Despite the fact that this conceptual model provides a better
representation of the flow than the more conventional application of linear theory
and that the wave amplitude is now consistent with that seen in the experiments, the
predicted variation of the drag coefficient is clearly very different. It is clear that the
observed drag is not easily explained by gravity-wave generation alone and we shall
return to this point in § 5.

4.2. Dividing-streamline height measurements

Attempts to measure the dividing-streamline heights for the four obstacles were made
by releasing dye close to the summits of the obstacles and, based on video footage,
deciding whether or not the dye passed over the summit of the obstacles or travelled
around the sides. These measurements were complicated by unsteadiness present
in the flow immediately upstream of the obstacles. Dye released on the obstacles’
centreplanes switched periodically from flowing around one side of the obstacle to
the other. It was therefore necessary to base the measurements on snapshots of the
flow taken at times when the dye was impinging on the centreplanes of the obstacles.
The measurements were repeated for a range of Fh and the results are illustrated
in figure 9. Also shown is Sheppard’s formula, equation (1.1). For both sizes of
hemisphere equation (1.1) provides a good estimate of the dividing-streamline height.
For the cones, however, it appears to underestimate it. The reason for this is not
entirely obvious and these results need to be interpreted with a degree of caution.
In neutral flow one would expect all streamlines on an obstacle’s centreplane to
pass over the summit, regardless of the shape of the obstacle. Even when the flow
is stably stratified the fluid parcels possess enough kinetic energy to travel over the
top. Certainly, the unsteadiness present in the flow makes these measurements quite
difficult and it is hard to estimate the errors involved. Indeed, for the cones, whose
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Figure 9. Dividing-streamline heights deduced from dye released upstream of the hemispheres and
cones. Also shown is the estimate given by Sheppard’s formula, equation (1.1).

summits are narrow in comparison to the hemispheres, the unsteadiness makes the
timing of the measurements critical. Another complicating factor is that due to the
spanwise oscillatory motion in the approaching flow (induced by vortex shedding
in the wake), the dye has a non-zero spanwise component of velocity as it travels
towards the summit of the obstacle. This may cause a tendency for the dye to travel
over the shoulder of the obstacle rather than directly over the summit. Such an
effect would be more important for obstacles with narrow summits (e.g. cones) than
for flat-topped shapes. Despite these reservations, figure 9 indicates that for all four
obstacles, Sheppard’s formula at least provides a necessary condition for fluid parcels
to travel over the summits, if not a sufficient one.

4.3. Measurements of the flow around the obstacles

The inviscid steady-state ideas of Drazin (1961) indicate that for small Fh, away from
the summit of the obstacle, the flow around the obstacle should be essentially two-
dimensional with vertical deflections limited to O(F2

h h). In order to test the relevance
of these ideas to the tank experiments, dye was released upstream of the obstacles at
heights between 0.54h and 0.65h and measurements were made of δ, defined as the
maximum vertical deflection of the dye from its upstream height as it passes around
the obstacle. The deflection of the dye was always downwards (i.e. towards the base
of the obstacle) and this is illustrated by the example provided in figure 10(a) which
shows a side view of the flow around the hemisphere HS2 when Fh = 0.27. There
are two difficulties associated with making such measurements. First, the spanwise
unsteadiness (see § 4.2) means that the measurements can only be made as the dye
crosses the centreplanes of the obstacles. Secondly, as Fh increases the position of
the maximum vertical displacement shifts further downstream of the obstacle. For
the higher values of Fh this position is located in a turbulent wake, making the
measurements very difficult. This was a serious problem with the cone C2 for which
reliable data could only be obtained for Fh < 0.15. Figure 11 shows the variation of δ
with Fh. It appears that for all four obstacle shapes δ increases with increasing Fh. It
is, however, difficult to draw any conclusions regarding the exact dependence on Fh:
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Figure 10. Visualization of the flow past the hemisphere HS2 when Fh =0.27 from (a) video footage
obtained from the side of the tank as the dye crosses the centreplane of the obstacle and (b) a
schematic illustration of the flow. The flow is from right to left relative to the obstacle in both
pictures. Also marked in (b) is the maximum downward deflection of the dye, δ.
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Figure 11. The maximum downward deflection of dye, δ, from its upstream level. The dye was
released at heights of 0.54h, 0.54h, 0.55h and 0.65h upstream of the obstacles C1, C2, HS1 and HS2,
respectively.

δ/h appears to vary linearly with Fh although such a dependence would also suggest
a non-zero intercept on the Fh-axis, which is hard to justify physically. It appears that
further measurements of δ, at values of Fh lower than those studied here, would be
needed to draw any firm conclusions regarding the validity of Drazin’s theory.

4.4. Measurements in the wake

Releasing dye upstream between the summits and bases of the cones and hemispheres
revealed the presence of an unsteady wake in which vortex shedding occurs. The flow
could be seen to separate from the sides of the obstacles, though the positions of the
separation points were unsteady and dependent on height, and vortices were shed in
the wake periodically. Consistent with the findings of Brighton (1978), the dye motion
suggests that the period of the vortex shedding does not vary with height. Obtaining
reliable measurements of the shedding period over a range of Fh and Re using dye
visualization alone proved to be very difficult, due mainly to the turbulent nature of
the wake at the higher Reynolds numbers. Instead, an alternative technique, using a
Nortek Acoustic Doppler Velocimeter (ADV) to make continuous measurements of
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the velocity in the wake was employed. The ADV is of the 5 cm downward-looking
three-dimensional variety and further details of it can be found in Snyder & Castro
(1998). The probe was positioned 0.8 ±0.1 m downstream of the obstacle centres
and its lateral position was typically a distance 0.5L to L off the centreline, where
L is the obstacle base width. For the vast majority of tows the height at which the
measurements were made (5 cm below the probe itself) was adjusted to h(1 − Fh)/2.
Assuming the dividing-streamline height, zs, is given by formula (1.1), then this is
equal to zs/2. During each tow the velocity in the wake was sampled at 25 Hz
and traces of both horizontal velocity components were found to be quite periodic.
The vertical velocities were generally negligible in this region. A typical horizontal
velocity trace, taken for the cone C2 when Fh =0.1, is shown in figure 12. Velocity
measurements were made for values of Fh between 0.05 and 0.4 and the horizontal
components showed periodic oscillations over this range, indicating the occurrence
of vortex shedding. Note that periodic shedding was sometimes absent at Fh = 0.3
for the cone C2 and so no tows were performed at higher Froude numbers for this
obstacle. Shedding frequently disappeared at Fh = 0.4 for the other obstacles and
for this reason, and the fact that for the smaller obstacles positioning the probe to
measure at half the dividing-streamline height became increasingly difficult, no ADV
measurements were made for Fh > 0.4. Note that the persistence of vortex shedding
for Froude numbers as high as 0.4 is contrary to the results from Brighton’s (1978)
experiments, for which the shedding disappeared above Fh = 0.15, but is consistent
with results from other towing-tank studies, e.g. the experiments of Castro et al. (1983)
in which shedding occurred at Fh = 0.3 but not at 0.4. Our results are also similar to
those from numerical simulations. Paisley & Castro (1995) conducted high Reynolds
number simulations of stratified flows past bell-shaped mountains and found that
vortex shedding occurred below Fh = 0.2 but at Fh = 0.3 the wake remained steady.
The reason for the disappearance of the shedding in Brighton’s (1978) experiments
at such a low Froude number is unclear, but is perhaps a Reynolds number effect,
since his experiments were conducted at considerably smaller Re. It is also interesting
to make comparisons with towing-tank studies of wakes behind spheres in stratified
flows. Chomaz, Bonneton & Hopfinger (1993) found that two-dimensional vortex
shedding occurred behind spheres when Fh . 0.5 and that at even higher values of
Fh (0.5 . Fh . 0.7), although the two vortices behind the sphere did not actually
separate, the wake was still unsteady due to a periodic oscillation in the position
of the two vortices. These findings are somewhat different to our results for the
hemispheres and cones.

In almost all cases the shedding frequencies were computed from both the horizontal
velocity traces separately by calculating an average period for each trace. Typically,
these values differed by less than 3%. For each tow an average value, based on the
values obtained from the two traces, was then calculated. A few additional tows were
repeated with the probe positioned at different heights. These revealed no significant
change in the period of the velocity signals, although the amplitude did vary and
shedding was not discernible for z & zs (again assuming zs/h = 1−Fh). The difficulty
with calculating a non-dimensional shedding frequency, or Strouhal number, for
these flows is that unlike the case of a two-dimensional obstacle (e.g. a cylinder or
rectangular plate) where the relevant length scale is simply the obstacle diameter,
when the diameter of the obstacle varies with height it is not clear what length scale
is appropriate. The simplest idea is to use the base width of the obstacles and define
a Strouhal number, S = fL/U where f is the frequency of the vortex shedding
measured from the velocity traces. Figure 13(a) shows how S depends on Fh for the
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Figure 12. ADV measurements of streamwise (solid line) and spanwise (dashed line) velocity made
during a tow of the cone C2 when Fh = 0.1, Re = 6750. The probe was positioned 4.07L downstream
of the centre of the cone and 0.9L from the centreline.
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Figure 13. The variation of the Strouhal number, S = fL/U, with Fh for (a) the hemispheres and
(b) the cones and triangular and rectangular plates.

hemispheres HS1 and HS2. Note that results from some tows of smaller hemispheres
with radii of 100 mm and 74 mm are also presented. Strouhal numbers for the cones
C1 and C2 are presented in figure 13(b). Also shown are Strouhal numbers for two
different shapes of flat plate although we defer discussion of these latter results.
For both the cones and hemispheres, there appears to be a slow increase of S with
increasing Fh and the values of S are clearly quite different for the different shapes
and even different sizes of the same shape (figure 13a).

It seems reasonable to suppose that the width of the wake might be determined
by the width of the obstacles at some height below the dividing-streamline height.
Based on this hypothesis, one possible relevant length scale is L2, the diameter of the
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Figure 14. The variation of the Strouhal number, S2 = fL2/U, with Fh for (a) the hemi-
spheres and (b) the cones and triangular and rectangular plates.

obstacle at half the dividing-streamline height, where once again we shall assume that
zs is given by equation (1.1). Figure 14(a) shows the variation of the Strouhal number,
S2 = fL2/U, with Fh for the hemispheres. Similarly, Strouhal numbers for the cones
C1 and C2 are presented in figure 14(b). Figures 13(a) and 14(a) indicate that, as
for the drag coefficient measurements, the Strouhal numbers for the hemispheres do
not collapse onto the same curve. In fact there is a general trend for the Strouhal
number to fall as the size of hemisphere decreases. This effect is clearly due to either
Reynolds number or blockage differences. Unlike the neutral flow case, when Fh � 1
one might expect blockage effects to be more significant because the flow is largely
constrained to move in two-dimensional planes. We have attempted to correct for
blockage effects by considering the average speed through the vertical plane which
intersects the obstacle centre and is orientated spanwise across the tank. For an
obstacle whose width is independent of height, if the flow is two-dimensional, then to
first order this average speed is U/(1−L/W ), where W is the width of the tank, since
the mass flux at the side of the obstacle must equal that upstream. In the present
study the situation is complicated by the fact that the widths of the obstacles vary
with height and therefore we shall define a blockage-corrected speed as

Uc =
U

1− L2/W
. (4.1)

We can now attempt to correct for blockage effects by defining a corrected Strouhal
number S2c = fL2/Uc. Figures 15(a) and 15(b) show how S2c varies with the effective
Froude number, Fhc = Uc/Nh, for the hemispheres and the cones, respectively. The
collapse of the data for all sizes of hemisphere appears to have improved considerably
(cf. figure 14), indicating that blockage effects are important in these flows. The
collapse of the cone data is also significantly improved. Comparing 15(a) and 15(b)
shows that the values of Sc for the cones are themselves similar (albeit slightly
smaller) to those for the hemispheres although, of course, there is no a priori reason
why we would expect the cone data to collapse onto the hemisphere data, especially
considering that as Fh increases the flow becomes increasingly three-dimensional.

Note that one might prefer, in principle, to use a correction known to be more
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Figure 15. The variation of the Strouhal number, S2c = fL2/Uc, corrected for blockage, with the
effective Froude number Fhc = Uc/Nh for (a) the hemispheres and (b) the cones and triangular and
rectangular plates. Also shown in (b) is the Strouhal number, Ss = fLs/Uc, for the triangular plate.

soundly based for bluff bodies rather than the correction used here. However, we
found that a correction using, for example, Maskell’s (1965) theory (a semi-empirical
correction for neutral flow past bluff bodies which is based on an approximate relation
for momentum balance in the flow outside the wake) did not improve the degree of
collapse in Strouhal number above that shown in figures 15(a) and 15(b) or improve
the collapse between the different shaped bodies. If anything, the collapse was made
slightly worse.

Reynolds number effects on the Strouhal number measurements have also been
investigated by plotting S2c against Re for fixed values of Froude number. Figure 16,
which shows the Reynolds number dependence of the blockage-corrected Strouhal
numbers for the hemispheres when Fh is fixed at 0.1 and 0.2, suggests that such effects
are quite weak.

It is interesting to compare the Strouhal number results with measurements made
in neutral flow. Neutral measurements of S made by Trischka (1980) at Re = 104

are ∼ 0.25 and ∼ 0.23 for cones with the same slope as C1 and C2, respectively.
These values are somewhat higher than the values of S2c we see in stratified flow
although figure 15(b) reveals that for weaker stratification our values for all the
obstacles approach those found by Trischka. It is also instructive to compare with
measurements made by previous researchers in stratified flows. Towing-tank work
at lower Reynolds numbers by Lin et al. (1992) and Chomaz et al. (1993) indicate
Strouhal numbers for spheres of around 0.2. This is of similar magnitude to the values
of S2c for the hemispheres when Fh . 0.2 (see figure 15). Towing-tank experiments
conducted by Castro et al. (1983) revealed values of S (based on the spanwise width
of their three-dimensional triangular ridges) between 0.14 and 0.18 and numerical
simulations of stratified flows past bell-shaped orography by Paisley & Castro (1995)
predict a Strouhal number of about 0.2. These values are all of a similar magnitude
to the measurements of S2c presented in figure 15 although the usefulness of such
a comparison must be questioned since previous authors have not taken blockage
effects into account. Brighton’s (1978) measurements of the Strouhal number for a
hemisphere (S = 0.44 when Fh = 0.084) is very different from our, and all other,
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Reynolds number for the hemispheres when Fh is fixed at 0.1 and 0.2.

measurements. Presumably this is again due to the low Reynolds numbers at which
his experiments were conducted. Finally, it is interesting to compare the Strouhal
numbers measured in the laboratory with those estimated from satellite imagery of
atmospheric flow past islands. Case studies presented by Berlin (1981) of vortex streets
behind the islands of Gran Canaria and La Palma suggest Strouhal numbers (based
on the spanwise distance between successive vortices rather than island diameter) in
the range 0.21–0.34. Despite the obvious additional complexity of the atmospheric
flows due to the complicated orography and variability in the background flow, these
values are somewhat similar to the ones obtained in the laboratory. Recently, Smith,
Gleason & Gluhosky (1997) have used satellite imagery to observe the wakes behind
islands in the Caribbean. However, comparison between their observations and the
laboratory experiments is not possible since they studied ‘weak’ wakes only, in which
the vorticity is not strong enough to form eddies but is instead advected downstream.

As mentioned previously, both the dye-injection and ADV measurements show
that the shedding frequency is independent of height. Whilst we might expect such a
result for a cylinder, where the width of the obstacle is constant, it is not clear why
this should be the case with a cone or hemisphere. Indeed, for neutral low Reynolds
number flow past tall slender cones (e.g. Papangelou 1992) it is known that vortex
shedding can occur in cells and in each cell the shedding occurs independently and
at a different frequency to adjacent cells. There was no evidence for this type of
behaviour in our experiments though it is possible that it may occur for lower values
of Fh and/or lower Re than those studied here. Further work (ideally involving the
simultaneous use of more than one ADV probe) is required to confirm or disprove
this. The fact that in the experiments presented here the shedding frequency is
independent of height indicates that a single length scale controls the vortex-street
dynamics. Indeed, experiments conducted by Sysoeva & Chashechkin (1988) show
that for strongly stratified flows the shape of the wake behind a sphere, defined by
the separation lines on the body, is approximately rectangular. In our experiments,
however, examination of the dye motion behind the cone C1 reveals that in general
this is not the case: the separation lines exhibit a spanwise periodic oscillatory motion,
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whose phase depends on height, and the mean position of the separation lines is such
that the width of the wake decreases towards the summit. This would appear to be
somewhat inconsistent with the fact that the Strouhal number data for both shapes of
cone can be made to collapse by choosing a single suitable length scale (see figure 15).

We have investigated this further by performing some additional tows with two
shapes of flat plate: a triangular plate of height 250 mm and base width 500 mm (the
same cross-sectional shape as the cone C1) and a rectangular plate of height 250 mm
and width 200 mm. For such obstacles the separation points are fixed at the edges
and thus the initial shape of the wake is determined by the obstacle shape alone. The
Strouhal numbers, S = fL/U, and S2 = fL2/U for the plates are shown in figures
13(b) and 14(b), respectively. As for the cones and hemispheres there appears to be a
tendency for the Strouhal numbers to increase with increasing Fh and the data do not
collapse onto the same curve. We have applied the blockage correction to the plate
data and, as can be seen from figure 15(b), the data again collapse reasonably well.
It appears, therefore, that even though the shapes of the wakes immediately behind
the obstacles are quite different for the triangular and rectangular plates (and also
different to the cones and hemispheres), further downstream a single length scale can
define the vortex-street dynamics. In a way these results are consistent with those of
Sysoeva & Chashechkin (1988) and suggest that in general, although the separation
lines will not describe a rectangular shape, further away from the obstacle the wake
may well have this form.

Note that Hunt et al. (1997) suggest a different length scale for the width of the
wake, namely the summit region width, Ls, i.e. the width of the orography at the
dividing-streamline height. If such a length scale were important, we would expect that,
after some suitable blockage correction, the Strouhal number based on this length
scale would collapse onto the same curve for the different obstacles. For conical
and triangular obstacles the width Ls becomes very small at low Froude numbers
and, as shown by figure 15(b), for the triangular plate, the resulting values of the
blockage-corrected Strouhal number, Ss = fLs/Uc, are much smaller than the values
of S2c for both the triangular and rectangular plates. Note that in the definition of Ss,
the corrected speed Uc which is used is obtained by replacing L2 by Ls in equation
(4.1). Since for the rectangular plate S2c and Ss are identical, we conclude that, in this
case at least, the width of the summit region is not the relevant length scale.

5. The drag due to vortex shedding and the verge region
5.1. The vortex-shedding contribution

As noted in § 4.1, it is not easy to account for the changes in drag (cf. neutral flow at the
same Reynolds number) using gravity-wave arguments alone. We have investigated
how the vortex-shedding mechanism contributes to the drag by suspending a splitter
plate behind the cone C1. The plate, which was slightly higher than the obstacle
and approximately 1 m long, was suspended approximately 5 mm to the rear of
the cone on the centreline. Flow visualization revealed that the addition of the
plate successfully prevented the vortex shedding and the resulting drag coefficient is
displayed in figure 17 along with the drag coefficient for the cone without the splitter
plate for comparison. For values of Fh . 0.3 the prevention of the vortex shedding in
the wake reduces the drag by about 25%. For higher values of Fh the drag appears to
be relatively unaffected by the splitter plate. Clearly the vortex-shedding mechanism
is a major contributor to the drag for the more strongly stratified flows (Fh . 0.3).
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Figure 17. The variation of the drag coefficient, Cds, with Fh for the cone C1 with and without a
splitter plate attached.

As stated in § 3.2, the drag coefficients for the hemispheres HS1 and HS2 are, like
the Strouhal numbers, significantly different. This is particularly true of the drag
coefficients at low Fh. Since the blockage ratio can significantly affect the Strouhal
number (see § 4.4) we shall attempt to account for blockage effects on Cds also by
defining a corrected drag coefficient, Cdsc , as

Cdsc =
τ

1
2
ρU2

c A
, (5.1)

where Uc is given by equation (4.1). By comparing figure 18, which shows Cdsc/Cd vs.
Fhc , with figure 4 it is evident that the effect of such a correction is to reduce the drag
from the measured values by a factor of up to about 50%. The agreement between the
two hemispheres is perhaps slightly improved at the lower Froude numbers (Fh . 0.5,
Fhc . 0.75) by this correction. Note that for all the obstacles Cdsc/Cd tends to values
considerably less than unity as Fhc increases. Whilst it is possible that this is due
to the fact that the blockage correction used is inappropriate at high values of Fh
(since the flow becomes increasingly three-dimensional as Fh increases), Castro et al.
(1990) also found that Cds/Cd < 1 for weak stratification and explained this effect on
the basis of the inhibiting effects of the stratification on the vertical motion in the
separated wake.

5.2. The verge-region contribution

Verge-region effects have been investigated by making a simple modification to the
shape of the hemisphere HS1. The modified shape, illustrated in figure 19, was formed
by adding an upstream-pointing ‘nose’ to the hemisphere. The effect of the nose is
to stretch the otherwise concentric circular contours below 100 mm in the upstream
direction, resulting in semi-ellipses. The variation with height of the semi-major axes
of these semi-ellipses is such that the slope of the shape tends to zero at the tip of
the ‘verge’.

Drag measurements were made for this obstacle for both stably stratified and
neutral flow. Results for the neutral case are shown in figure 2(b). Despite the increase
in skin friction caused by the addition of the verge the drag appears to be reduced
by about 20%. This reduction is presumably due to the obstacle’s more streamlined
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Figure 18. The dependence of the ratio of the drag coefficient corrected for blockage, Cdsc ,
to the neutral drag coefficient, Cd, on the Froude number, Fhc .
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Figure 19. The hemisphere HS1 with ‘verge’ attached. See text for further explanation.

shape which must delay separation and reduce the size of the wake. Figure 20
compares the stratified drag coefficient with and without the verge. It appears that
for the very lowest values of Fh, the addition of the verge increases the drag and as
Fh increases, the increase in the drag becomes less significant. Greenslade (1994) has
shown that the presence of a verge region in stratified conditions will cause vertical
motion within the verge region, leading to the possibility of gravity-wave generation,
thus increasing the drag. The motion of dye, injected so as to flow over and around
the verge, does indeed reveal downward vertical deflections (like those observed in
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Figure 20. The variation of the stratified drag coefficient, Cds, with Fh for the hemisphere HS1
with and without the upstream pointing verge attached.

§ 4.3) which did not exist in the absence of the verge. However, no significant vertical
motion was observed above the verge in the middle region of the flow, indicating that
either the direction of gravity-wave propagation away from the verge region is such
that the dye visualization was simply in the wrong place, or no gravity waves were
generated. At present we are unable to draw any firm conclusions regarding this.
There are, of course, factors other than gravity-wave generation which could explain
the increase in the drag. The presence of strong stratification may cause an otherwise
turbulent boundary layer to be laminar, thus increasing the likelihood of early flow
separation and increasing the width of the wake. The verge will also increase skin
friction. However, given the reduction in the drag caused by the verge in the neutral
case it is likely that this effect will be small.

6. Conclusions
In this study we have addressed some fundamental questions regarding stratified

flows past three-dimensional orography. The laboratory experiments have revealed
some interesting new results and significant differences between the observed flows
and predictions based on Drazin’s (1961) theory. For example, the experiments show
that the flows are unsteady over a wide range of Froude numbers whereas Drazin’s
solution is for steady flow. As observed by previous researchers (e.g. Brighton 1978;
Castro et al. 1983), flow visualization reveals the presence of a separated wake (which
itself is not accounted for by the theory) in which vortex shedding occurs. Velocity
measurements and flow visualization show that the shedding persists up to values of
Fh as high as 0.4. The vortex shedding is also responsible for a spanwise oscillation
upstream of the obstacles.

Contrary to the findings of Sysoeva & Chashechkin (1988), the shape of the
wake, as defined by the separation lines, is in general not rectangular. However,
the frequency of the vortex shedding measured some distance downstream of the
orography (typically between 3L and 4L) is independent of height and by defining
a Strouhal number based on L2, the obstacle width at half the dividing-streamline
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height, the Strouhal numbers for the cones and hemispheres collapse, to a reasonable
degree, onto the same curve when plotted against Froude number. In calculating these
Strouhal numbers some allowance for blockage effects must be made. This has been
done quite successfully by defining an approximate average velocity based on the idea
that the mass flux at the side of the obstacle must equal that upstream (see equation
(4.1)). Additional Strouhal number measurements for triangular and rectangular flat
plates, again based on L2 and the blockage-corrected tow-speed, further confirm the
collapse of the data and although our suggestion of L2 as a controlling length scale
is no more than an educated guess, the agreement indicates that away from the
orography the wake is approximately rectangular even though the separation lines on
the surface do not describe such a shape. Note that the length scale L2 is significantly
different to that proposed by Hunt et al. (1997) who suggested that the width of the
wake is determined by the summit region width, Ls. Our results reveal that, at least
in the cases studied here, this is not the case.

The results show that stratification significantly increases the drag above the values
in neutral flow. Depending on the obstacle shape the maximum value for the drag
is typically between 2.8 and 5.4 times the value in neutral flow when Fh . 0.25.
The results also show that, in general, under strongly stratified conditions (Fh < 1),
as Fh decreases, the drag coefficient increases whilst the wave amplitude decreases.
This behaviour is different to what occurs at more moderate stratification where the
drag and wave amplitude are closely linked and is clearly inconsistent with the idea
that gravity waves are largely responsible for the drag. For very strongly stratified
flows the dominant contribution to the drag comes from the presence of a separated
wake. Drag measurements for a cone of unit slope with a splitter plate show that
vortex shedding alone is responsible for about 25% of the drag when Fh . 0.3. The
contribution from the wake to the net drag could well be important at atmospheric
scales also, in which case it is important that such effects are properly represented in
orographic drag parametrization schemes for numerical weather prediction models.
Note that gravity-wave generation still makes a measurable contribution to the drag
however, as is evident from the K-dependence of the drag coefficient measurements
when K < 3. The effect of a verge region on the drag has also been investigated.
Although only preliminary, our study indicates that such a region is a likely (but
perhaps relatively minor) source of drag in stratified flows, as recent theory suggests.
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